1. Latest Mobile Phone 2023
  2. All Products
  3. Samsung
  4. Samsung Galaxy A25

Samsung Galaxy A25

Samsung Galaxy A25
Brand: Samsung
Category: Smartphone
  • Released: Not announced yet
  • OS: Android 14, One UI 6
  • Display: 6.44" 1080 × 2340 pixels
  • Camera: 50MP 1080p
  • Ram: 8GB RAM Exynos 1280
  • Battery: 5000mAh Li-Po

Device Specifications


Released Not announced yet
Status Coming Soon


2G bands In an era of lightning-fast 5G connectivity and cutting-edge smartphone technologies, it's easy to forget the humble beginnings of mobile communication. The advent of 2G bands marked a pivotal moment in the history of mobile phones, revolutionizing how people communicate and paving the way for the interconnected world we enjoy today. In this article, we delve into the significance of 2G bands, their impact on the mobile phone industry, and their relevance in the present day. The Birth of 2G Bands: The concept of 2G (second generation) mobile networks emerged in the 1990s, replacing the archaic analog systems with digital cellular networks. This leap in technology allowed for more efficient voice and data transmission, ushering in a new era of mobile communication. 2G bands, such as GSM (Global System for Mobile Communications) and CDMA (Code Division Multiple Access), became the standard for mobile phone networks worldwide. Advantages of 2G Bands: a. Enhanced Efficiency: The digital nature of 2G networks provided improved call quality, reduced interference, and enhanced battery life. These advancements were instrumental in popularizing mobile phones and bringing them to the masses. b. Data Transmission: While the primary purpose of 2G networks was voice communication, they also laid the foundation for basic data services. Simple tasks like sending text messages and accessing WAP (Wireless Application Protocol) services became possible, albeit at slower speeds compared to modern networks. c. Global Standardization: The GSM standard, in particular, played a pivotal role in establishing a global standard for mobile communication. This allowed for seamless roaming and interoperability between different networks and mobile devices worldwide, fostering international connectivity. Evolution and the Legacy of 2G Bands: As technology progressed, subsequent generations of mobile networks, namely 3G, 4G, and now 5G, surpassed the capabilities of 2G bands. These newer networks provided faster data speeds, low latency, and support for advanced multimedia services. Consequently, many countries and network providers have decommissioned or are in the process of phasing out 2G networks to make way for more advanced technologies. Continued Relevance of 2G Bands: Despite the ongoing transition to faster networks, 2G bands still hold relevance in certain contexts: a. Legacy Devices: Many feature phones, especially in developing regions, still rely on 2G networks for basic communication. These devices offer affordable options for individuals who primarily require voice calls and basic messaging services. b. IoT (Internet of Things): A significant number of IoT devices, such as smart meters, home security systems, and industrial sensors, operate on 2G networks. The low power requirements and extensive coverage provided by 2G make it an ideal choice for these applications. c. Remote Areas: In remote and rural areas with limited infrastructure, 2G networks may be the only viable option for mobile communication due to their extended coverage capabilities. Conclusion: While 2G bands may no longer dominate the mobile phone landscape, their impact and legacy are undeniable. These networks laid the groundwork for the digital revolution and interconnected world we inhabit today. As newer generations of mobile networks continue to evolve, it's important to remember the humble origins of 2G and the significant role it played in shaping our mobile communication landscape. GSM 850 / 900 / 1800 / 1900 - SIM 1 & SIM 2 (dual-SIM only)
3G bands In the ever-evolving world of mobile communication, each generation of technology builds upon its predecessor, pushing the boundaries of connectivity and functionality. 3G bands, the third generation of mobile networks, emerged as a game-changer, introducing a new era of high-speed data transmission and paving the way for a range of advanced mobile services. In this article, we explore the significance of 3G bands, their impact on the mobile phone industry, and the lasting influence they continue to exert in our daily lives. The Leap to 3G: The development of 3G technology emerged in the early 2000s, following the widespread adoption of 2G networks. 3G, which stands for third-generation, marked a significant shift by bringing high-speed data transmission capabilities to mobile devices. It introduced a host of technological advancements that revolutionized the way people communicate, consume media, and access the internet on their phones. Advantages of 3G Bands: a. Faster Data Transfer: One of the key advantages of 3G bands was the significant improvement in data transfer speeds compared to 2G networks. 3G networks allowed for faster web browsing, email access, and multimedia streaming, making it possible to enjoy a richer mobile experience. b. Multimedia Capabilities: With the introduction of 3G, mobile phones became multimedia powerhouses. Users could now access video calls, live TV, music streaming, and video-on-demand services directly on their devices. This shift brought about a fundamental change in the way people consumed media on the go. c. Enhanced Connectivity: 3G networks provided a more stable and reliable connection compared to their predecessors. This stability enabled users to stay connected even in areas with weaker network coverage, ensuring a more consistent communication experience. Evolution and the Transition to 4G: As technology continued to progress, 3G networks eventually made way for the fourth generation of mobile networks, commonly known as 4G. With faster speeds, lower latency, and improved efficiency, 4G networks further expanded the possibilities of mobile communication. However, even with the emergence of 4G, 3G networks continued to play a vital role in many parts of the world, particularly in areas where 4G infrastructure was still under development. The Global Impact of 3G Bands: a. Bridging the Digital Divide: 3G networks played a significant role in bridging the digital divide by providing internet access to regions that lacked wired infrastructure. In developing countries, 3G networks offered a gateway to the digital world, enabling people to access vital information, educational resources, and online services. b. Mobile Broadband Revolution: The advent of 3G opened up new opportunities for mobile broadband services, allowing users to connect their devices to the internet wherever they went. This revolutionized the way people worked, communicated, and accessed information, empowering a more mobile and flexible lifestyle. c. Legacy Devices and Backup Networks: Even as newer generations of networks emerged, 3G bands remained relevant due to the presence of legacy devices that relied on 3G connectivity. Additionally, 3G networks acted as backup networks during emergencies or network congestion scenarios, ensuring a continuous communication channel. Conclusion: The introduction of 3G bands marked a significant milestone in the history of mobile communication, bringing forth a wave of technological advancements and transforming the way we interact with our mobile devices. While 4G and now 5G networks continue to push the boundaries of connectivity, 3G networks still play a vital role in providing access to information, bridging the digital divide, and serving as a fallback option in certain scenarios. The influence HSDPA 850 / 900 / 1900 / 2100
4G bands In an era driven by constant connectivity and high-speed data transfer, 4G bands have emerged as the backbone of mobile communication, revolutionizing the way we connect, communicate, and consume content on our smartphones. As the fourth generation of mobile networks, 4G has brought unprecedented speed, efficiency, and reliability to the world of mobile communication. In this article, we delve into the significance of 4G bands, their impact on the mobile phone industry, and the transformative possibilities they offer in our increasingly connected world. The Rise of 4G: 4G technology represents a significant leap forward from its predecessor, 3G, in terms of speed, capacity, and capabilities. It was introduced in the late 2000s and quickly gained traction worldwide as mobile network operators began deploying 4G infrastructure. This technology breakthrough enabled mobile devices to achieve faster download and upload speeds, reduced latency, and enhanced network stability. Advantages of 4G Bands: a. Lightning-Fast Data Transfer: The primary advantage of 4G bands lies in their ability to deliver blazingly fast data transfer speeds. With download speeds ranging from several megabits to gigabits per second, users can seamlessly stream HD videos, video conference with crystal-clear quality, and download large files in seconds. b. Enhanced Multimedia Experience: 4G networks have revolutionized the way we consume multimedia content on our mobile devices. With high-speed connectivity, users can enjoy seamless streaming of high-definition videos, music, and live broadcasts. This has driven the rise of video-on-demand services, online gaming, and immersive virtual reality experiences. c. Advanced Applications and Services: The speed and low latency offered by 4G have paved the way for a wide range of advanced applications and services. From real-time navigation and augmented reality applications to cloud-based services and Internet of Things (IoT) connectivity, 4G has unlocked new possibilities and improved efficiency across various industries. Global Impact and Accessibility: a. Bridging the Digital Divide: 4G networks have played a significant role in bridging the digital divide, bringing internet connectivity to underserved areas and regions with limited infrastructure. The accessibility and affordability of 4G-enabled devices have empowered individuals and communities by providing access to education, e-commerce, healthcare services, and government initiatives. b. Mobile Workforce and Connectivity: 4G has facilitated the growth of the mobile workforce by enabling seamless remote work and collaboration. With fast and reliable connectivity, professionals can work from anywhere, participate in virtual meetings, and access corporate resources on the go. This flexibility has transformed traditional work dynamics and increased productivity. c. Rural Connectivity and IoT Applications: 4G networks have extended connectivity to remote and rural areas, enabling IoT applications such as smart agriculture, smart grid systems, and remote monitoring. These applications have the potential to improve efficiency, reduce resource consumption, and enhance the quality of life in these regions. Future Prospects and the Transition to 5G: While 4G has transformed mobile communication, the evolution continues with the advent of 5G networks. As the fifth generation of mobile networks, 5G promises even faster speeds, ultra-low latency, and massive connectivity to support emerging technologies like autonomous vehicles, smart cities, and the Internet of Things on a larger scale. However, the widespread adoption of 5G will take time, and 4G networks will continue to play a crucial role in providing reliable connectivity during the transition. Conclusion: The emergence of 4G bands has ushered in a new era of mobile communication, revolutionizing the way we connect and interact with the digital world. With its lightning-fast data transfer speeds, enhanced multimedia capabilities, and transformative applications, 4G has empowered individuals, communities, and industries worldwide. As we embark on the journey towards 5G, it is essential to acknowledge the lasting impact and continued relevance of 4G networks in driving connectivity, bridging gaps, and creating a more connected and inclusive global society. LTE


Build Smartphone body build refers to the physical construction and materials used in the manufacturing of smartphones. The body build plays a significant role in the overall design, durability, and feel of the device. Here are some common smartphone body build types: Metal Unibody: Smartphones with a metal unibody construction are made from a single piece of metal, usually aluminum or stainless steel. This design offers a premium look and feel, as well as robustness and structural integrity. Metal unibody smartphones often have a sleek and seamless appearance with minimal visible seams or joints. Glass and Metal Combination: Many smartphones feature a combination of glass and metal elements in their body construction. These devices typically have a metal frame for structural strength and rigidity, with glass panels on the front and/or back. Glass provides a smooth and reflective surface while allowing for wireless charging functionality in some cases. However, glass bodies may be more prone to fingerprints, smudges, and accidental drops. Plastic (Polycarbonate): Plastic, specifically polycarbonate, is a lightweight and flexible material commonly used in smartphone bodies. Plastic smartphones are often more affordable and can offer a range of colors and finishes. While they may be less premium in appearance compared to metal or glass, plastic bodies can be more resistant to impact and provide better signal reception. Ceramic: Ceramic body smartphones are less common but offer a unique look and feel. Ceramic is a durable material that provides a smooth and scratch-resistant surface. Ceramic smartphones are often more resistant to heat and have a premium aesthetic. However, they can be more prone to shattering if dropped compared to other materials. Composite or Hybrid Materials: Some smartphones incorporate composite or hybrid materials that combine elements like metal, plastic, glass, or even carbon fiber. These materials are used to achieve specific design characteristics, such as improved strength, weight reduction, or unique visual effects. It's important to note that different smartphone models and manufacturers may have variations in body build materials and design choices. The choice of body build materials can impact factors such as device weight, durability, signal reception, heat dissipation, and wireless charging compatibility. Manufacturers often aim to strike a balance between aesthetics, durability, functionality, and cost when choosing the body build materials for their smartphones. Glass front, plastic frame, plastic back
SIM Single SIM (Nano-SIM) or Dual SIM (Nano-SIM, dual stand-by)


Display Type Display Technology => A number of display technologies and types used in mobile phones => TFT (Thin Film Transistor), IPS (In-Place Switching), OLED (Organic Light Emitting Diode), AMOLED (Active-Matrix Organic Light-Emitting Diode), Super AMOLED (an even advanced version of AMOLED), Resistive Touchscreen (Resistive touchscreens contain two layer of conductive material with a very small gap between them which acts as a resistance), Capacitive Touchsceen (Capacitive touchscreen technology consists of a layer of glass coated with a transparent conductor) Super AMOLED capacitive touchscreen, 16M colors
Size 6.44 inches, 101.8 cm2
Resolution 1080 x 2340 pixels, 19.5:9 ratio (~400 ppi density)
Features 90Hz


Card Slot Memory Card Slot is a special slot for inserting a memory card. Memory cards allow you to expand the phone's built-in memory, A memory card (sometimes called a flash memory card or a storage card) is a small storage medium used to store data such as text, pictures, audio, and video, for use on small, portable or remote computing devices such as mobile phones, mp3 players, digital cameras. microSDXC (uses shared SIM slot)
Internal Storage Internal Storage is a data storage space (flash memory) mostly used in smartphones, tablets and other electronic devices where operating system, apps, music, photos, videos, files and other user data Is stored. 128 GB


OS Android 14, One UI 6
Chipset Chipset is a group of integrated circuits designed to perform one or a more dedicated functions, often with real time computing constraints, Popular smartphones are equipped with more advanced embedded chipsets that can do many different tasks depending on their programming. Exynos 1280 (5 nm)
CPU CPU (Central Processing Unit) mostly known as processors, CPU processes instructions in order to carry out certain functions that make your device operate properly. Processors are often described as the brain of computers, smartphones and tablets, Smartphones and tablets rely on processors to carry out their every task, Processors are an incredibly important factor in selecting any type of computing device, including your smartphone. Octa-core (2x2.4 GHz Cortex-A78 & 6x2.0 GHz Cortex-A55)
GPU GPU (Graphics Processing Unit) is a single-chip processor designed to rapidly manipulate and alter memory to accelerate the creation of images in a frame buffer intended for output to a display, This includes things such as lighting effects, object transformations, and 3D motion. Mali-G68

Main Camera

Triple 50 MP, f/1.8, (wide), PDAF, OIS
5 MP, f/2.2, 123˚ (ultrawide), 1/5", 1.12µm
2 MP, f/2.4, (macro)
Video 1080p@30fps
Features LED flash, panorama, HDR

Front Camera

Single 13 MP, f/2.2, (wide)
Features HDR
Video 720p@30fps


Capacity Battery Capacity is a measure (typically in Amp-hr) of the charge stored by the battery, and is determined by the mass of active material contained in the battery. The battery capacity represents the maximum amount of energy that can be extracted from the battery under certain conditions. 5000mAh Li-Po, non-removable
Charging 25W wired


WLAN Wi-Fi 802.11 a/b/g/n/ac, dual-band, Wi-Fi Direct
Bluetooth The smartphone Bluetooth system refers to the built-in Bluetooth functionality and software present in smartphones. Bluetooth is a wireless communication technology that allows devices to connect and exchange data over short distances without the need for cables. Here are some key aspects of the smartphone Bluetooth system: Bluetooth Version: Smartphones support different Bluetooth versions, such as Bluetooth 4.0, 4.2, 5.0, and so on. Each version introduces improvements in terms of data transfer speed, range, power efficiency, and features. Pairing: To establish a connection between two Bluetooth-enabled devices, they need to go through a pairing process. Pairing involves making the devices discoverable, searching for nearby devices, and entering a PIN or confirming a passkey to establish a secure connection. Profiles: Bluetooth profiles define the functions and capabilities supported by a device. Smartphones typically support various Bluetooth profiles, such as Hands-Free Profile (HFP) for phone calls, Advanced Audio Distribution Profile (A2DP) for streaming audio, and File Transfer Profile (FTP) for sharing files. Connection Range: The effective range of Bluetooth connectivity can vary depending on the Bluetooth version and external factors like obstacles and interference. Typically, Bluetooth has an indoor range of up to 30 feet (10 meters) or more in ideal conditions. Battery Efficiency: Bluetooth technology has evolved to be more power-efficient in newer versions. Bluetooth Low Energy (LE) introduced in Bluetooth 4.0 and later versions enables devices to maintain a connection with minimal power consumption, making it suitable for applications like fitness trackers and smartwatches. Audio and Data Transfer: The smartphone Bluetooth system enables wireless audio streaming to Bluetooth headphones, speakers, or car audio systems. It also supports data transfer between smartphones and other Bluetooth-enabled devices like laptops, tablets, and smart home devices. Bluetooth Settings: Smartphones have dedicated settings menus for Bluetooth, allowing users to manage paired devices, enable or disable Bluetooth, adjust visibility settings, and control other Bluetooth-related preferences. Bluetooth Security: Bluetooth connections employ various security measures, including encryption and authentication, to ensure secure communication between devices and protect against unauthorized access. It's important to note that different smartphone models and manufacturers may have variations in the Bluetooth features and settings offered. The Bluetooth capabilities and user interface may differ based on the smartphone's operating system, such as Android or iOS. The smartphone Bluetooth system plays a crucial role in facilitating wireless connectivity, enabling users to connect and interact with a wide range of Bluetooth-enabled devices and accessories for enhanced functionality and convenience. 5.3, A2DP, LE
GPS GPS The Global Positioning System is a satellite-based radio navigation system, GPS permits users to determine their position, velocity and the time 24 hours a day, in all weather, anywhere in the world, In order to locate your position, your device or GPS receiver must have a clear view of the sky. GPS, GLONASS, GALILEO, BDS, QZSS
NFC NFC (Near field communication) is a set of standards for smartphones and similar devices to establish peer-to-peer radio communications with each other by touching them together or bringing them into proximity, usually no more than a few inches. Yes
FM Radio No
Infrared Infrared The world is becoming more and more reliant on technology, and one of the most exciting and innovative forms of technology is infrared technology. Infrared technology is able to capture light, heat, and other signals that are invisible to the naked eye, and can be used in a variety of applicat Infrared technology can be used in many different ways. It has been used to detect heat sources in infrared cameras and to help detect damage in buildings. It can also be used to create images of objects that are invisible to the naked eye. Additionally, it can be used to control remote devices, measure temperature, and provide an extra layer of security in buildings and homes. Furthermore, it can be used to help in medical diagnostics, such as thermography and thermometry. Finally, infrared technology is used in robotics and drones to provide navigation. With its many applications, it is clear that infrared technology is an important tool that can be used in many different fields. ions from medical imaging to security. In this blog post, we'll explore the basics of infrared technology and discuss how it is being used in a variety of fields. No
USB USB Type-C 2.0


Loudspeaker Yes
3.5mm jack Yes


Sensors Sensors are electronic components that detects and responds to some type of input from the physical environment. The specific input could be light, heat, motion, moisture, pressure and location, The output is generally a signal that is converted to use in computing systems, a location sensor, such as a GPS receiver is able to detect current location of your electronic device. Fingerprint (side-mounted), accelerometer, gyro, compass
Virtual proximity sensing

Samsung Galaxy A25 Full Specification & Price in Bangladesh

The Samsung Galaxy A25 is now available in one variant (8GB RAM & 128GB ROM). Now, its Price is 27,999 Taka(Expected) in Bangladesh & has a 5000mAh battery with fast charging 22W. The device runs on Android 14 and powered by the Exynos 1280 (5 nm) chipset.

Samsung Galaxy A25 price in bd

Model : Samsung Galaxy A25
Price : BDT. 27,999 Taka(Expected)
Display : 6.44″ 1080 × 2340 pixels
RAM : 8 GB
ROM : 128 GB
Released : 2023 September

Samsung Galaxy A25 spotlight

Samsung Galaxy A25: The Perfect Mid-Range Smartphone

Samsung Galaxy A25


In the ever-evolving world of smartphones, Samsung continues to lead the way with its Galaxy A series, offering a wide range of devices tailored to meet the diverse needs of consumers. The Samsung Galaxy A25 is a standout option in this series, providing an exceptional blend of performance, style, and affordability. In this article, we will delve into the key features and specifications of the Samsung Galaxy A25 to help you understand why it deserves your attention.

Design and Display

The Samsung Galaxy A25 boasts an elegant and sleek design that’s both modern and ergonomic. Its slim profile and premium build quality make it comfortable to hold and a pleasure to look at. The device is available in various color options, allowing you to choose the one that best suits your style.

One of the highlights of the Galaxy A25 is its impressive display. It features a large 6.4-inch Super AMOLED Infinity-U display with a Full HD+ resolution. This means you can expect vibrant colors, deep blacks, and sharp details, making it ideal for everything from watching movies to browsing the web and playing games. The Infinity-U notch at the top of the screen houses the front-facing camera, maximizing screen real estate.

Performance and Software

Under the hood, the Samsung Galaxy A25 is powered by a capable octa-core processor, ensuring smooth and responsive performance for everyday tasks and multitasking. Whether you’re streaming content, playing games, or using multiple apps simultaneously, the Galaxy A25 can handle it all with ease.

Running on Samsung’s One UI, which is based on the latest Android operating system, the Galaxy A25 provides a user-friendly and intuitive interface. You’ll enjoy features such as split-screen multitasking, a dark mode for improved battery life, and a host of customization options to tailor the device to your preferences.

Camera System

The Samsung Galaxy A25 is equipped with a versatile quad-camera system that lets you capture stunning photos and videos in various conditions. The main camera boasts a 48-megapixel sensor, delivering sharp and detailed images even in low light. The 8-megapixel ultra-wide-angle lens allows you to capture wide scenic shots, while the 5-megapixel macro lens lets you get up close to your subjects. Additionally, there’s a 5-megapixel depth sensor for creating beautiful portrait shots with a pleasing background blur effect.

On the front, you’ll find a 13-megapixel selfie camera housed within the Infinity-U notch. This camera is perfect for snapping high-quality selfies and engaging in video calls with friends and family.

Samsung Galaxy A25

Battery Life and Connectivity

The Samsung Galaxy A25 features a sizable 5,000mAh battery, ensuring that you can stay connected all day long without constantly searching for a charger. With moderate usage, this battery can easily last you through an entire day, making it an excellent choice for users who are always on the go.

When it comes to connectivity, the Galaxy A25 offers a variety of options, including 4G LTE, Wi-Fi, Bluetooth, and GPS. It also has a USB Type-C port for faster charging and data transfer speeds. Additionally, the device supports dual SIM cards, allowing you to use two phone numbers on a single device.

Storage and Expandability

The Samsung Galaxy A25 comes with ample storage space, starting at 64GB, which should be sufficient for most users. If you find yourself needing more storage, the device has a dedicated microSD card slot that allows you to expand the storage capacity up to an additional 512GB. This means you can store a vast amount of photos, videos, apps, and files without worrying about running out of space.

Positive Statements:

Impressive Display: The Samsung Galaxy A25 features a large, vibrant display that provides an immersive viewing experience. With its Full HD+ resolution and Super AMOLED technology, you can expect sharp visuals, rich colors, and deep blacks, making it ideal for multimedia consumption.

Long-lasting Battery Life: Equipped with a robust battery, the Galaxy A25 can easily handle a full day of moderate to heavy usage. This means you won’t have to constantly worry about finding a charging point, making it suitable for on-the-go users.

Samsung Galaxy A25

Competent Performance: Powered by a capable processor and sufficient RAM, the Galaxy A25 handles everyday tasks with ease. It can smoothly run most apps and games, ensuring a lag-free experience for users.

Versatile Camera System: The smartphone boasts a versatile camera setup that includes multiple lenses for various photography needs. Whether you’re capturing landscapes, portraits, or macro shots, the Galaxy A25 delivers good image quality.

Ample Storage: With generous internal storage and support for expandable storage via a microSD card, users won’t have to worry about running out of space for their apps, photos, and videos.

Negative Statements:

Plastic Build: One of the cost-saving measures on the Galaxy A25 is its plastic build, which doesn’t feel as premium as devices with glass or metal builds. However, this is a common compromise in the mid-range segment.

Limited Gaming Performance: While the Galaxy A25 can handle most casual games, it may struggle with resource-intensive games at high settings. Gamers looking for a more robust gaming experience may find it lacking.

Lack of 5G Support: In an era where 5G networks are becoming more prevalent, the absence of 5G connectivity on the Galaxy A25 may disappoint users who want to future-proof their device.

One UI Software: Samsung’s One UI skin comes pre-installed on the Galaxy A25. While it offers numerous features and customization options, some users may prefer a cleaner, stock Android experience.

Competitive Mid-Range Market: The Samsung Galaxy A25 faces stiff competition in the mid-range smartphone market. There are several other devices with similar or even better specifications at similar price points.


The Samsung Galaxy A25 brings several positive features to the table, such as its impressive display, long-lasting battery, and versatile camera system. However, it also has some limitations, including its plastic build and lack of 5G support. Ultimately, whether the Galaxy A25 is the right choice for you depends on your priorities and budget. If you value the Samsung brand, reliable performance, and a good camera system in a mid-range smartphone, the Galaxy A25 could be a suitable option. However, if you’re seeking the latest cutting-edge features or a premium build, you may need to explore higher-end models or other brands in the market.

YouTube player

1. What are the key specifications of the Galaxy A25?

Samsung Galaxy A25

The Samsung Galaxy A25 boasts a 6.5-inch Super AMOLED display, a MediaTek Helio P65 chipset, 4GB of RAM, and 64GB of internal storage. It also features a quad-camera setup on the rear, with a 48MP primary camera, an 8MP ultra-wide-angle camera, a 5MP macro camera, and a 2MP depth sensor. The front camera is 13MP, and the device is powered by a 5,000mAh battery.

2. Is the Galaxy A25 5G compatible?

Samsung Galaxy A25

No, the Samsung Galaxy A25 does not support 5G connectivity. It operates on 4G LTE networks, which should be sufficient for most users’ data needs.

3. Can I expand the storage on the Galaxy A25?

Samsung Galaxy A25

Yes, the Samsung Galaxy A25 comes with a microSD card slot that allows you to expand the storage by up to 512GB. This is great news for users who need extra space for photos, videos, and apps.

4. Does the Galaxy A25 have a fingerprint sensor?

Samsung Galaxy A25

Yes, the Samsung Galaxy A25 features a rear-mounted fingerprint sensor for secure and convenient unlocking of the device.

5. What operating system does the Samsung Galaxy A25 run on?

Samsung Galaxy A25

The Samsung Galaxy A25 runs on Samsung’s One UI 2.1, which is based on the Android 10 operating system. While it may not be the latest version of Android, it still offers a smooth and user-friendly experience.

6. Is the Samsung Galaxy A25 water-resistant?

Samsung Galaxy A25

No, the Samsung Galaxy A25 is not water-resistant, so you should exercise caution when using it near water or in wet conditions.

7. How is the battery life on the Samsung Galaxy A25?

Samsung Galaxy A25

With its 5,000mAh battery, the Samsung Galaxy A25 offers impressive battery life. It can easily last a full day on a single charge with moderate to heavy use.

8. Does the Samsung Galaxy A25 support fast charging?

Samsung Galaxy A25

Yes, the Samsung Galaxy A25 supports 15W fast charging, which means you can quickly replenish the battery when it’s running low.

9. What colors is the Samsung Galaxy A25 available in?

Samsung Galaxy A25

The Samsung Galaxy A25 is available in a variety of attractive colors, including Black, Blue, and White. You can choose the one that best suits your style.

10. Is the Samsung Galaxy A25 a good value for the money?

Samsung Galaxy A25

The Samsung Galaxy A25 is generally considered a good value for the money. It offers a solid set of features, a capable camera system, and a long-lasting battery at an affordable price point. However, whether it’s the right choice for you depends on your specific needs and preferences.


  • Be the first to add a Review

    Please post a user review only if you have / had this product.

  • Rate this Product

  • What do you feel about Design and build quality of this device?
  • Screen size, image quality (brightness, colors, contrast, etc), visibility in sun light, angles of view and touchscreen.
  • Usability of Camera interface, image and video quality in different light conditions and environment.
  • Bluetooth, Wi-fi connectivity, data trnasfer speed, internet browsing and interfaces.
  • When you call someone, what is the voice quality you hear or vice versa, is speakerproduct working good during calls.
  • Is this device perform good while watching videos, playing games, taking snapshots, browsing internet and navigate through other applications?
  • What about battery life, while calling, listening music, watching videos, playing games and doing other tasks.
  • 6 / 10 based on your selection

Phone BrandsView All

Show More Brands

News & Reviews

Phone BrandsView All

Show More Brands